Zebracorn Labs

Here at the Zebracorns, we believe in learning and pushing boundaries. In pursuit of that, we have published papers, given talks, and have other tidbits of knowledge lying around. We hope you enjoy these as much as we do.

26 Nov 2019 - Caleb Krellwitz, Camryn Byrum, Grace Sullivan, Kevin Jaget, Marshall Massengill, The Zebracorns

ZebROS Nano

At long last, we have scaled down our robot (but not our efforts) in an attempt to bring our work with ROS to more people. This tutorial focuses on our work with the NVIDIA Jetson Nano, a TileRunner Chassis from AndyMark, and Talon SRX Motor Controllers from Cross The Road Electronics to bring our ZebROS work to a larger audience. We think that the NVIDIA Jetson Nano is an excellent system to bring new robots online or bring older robots back to life and teach yourself some new skills around ROS in the process. We've done our best to make sure this Tutorial is easy to follow but we are releasing the document as a living Google document and not a PDF so that we can keep updating this as we get questions and eventually add even more to this tutorial. We're also releasing our complete software image for this so getting started is even easier.

26 Sep 2019 -

Collaborative Whitepapers Using Overleaf

Overleaf generously agreed to provide us with a premium subscription which allows us to keep and share the source code of our whitepapers. In this paper, we want to express our gratitude for their generosity, explain our process for writing, editing, and publishing whitepapers, and talk about the features of Overleaf that we like the most.

11 Sep 2019 - Niall Mullane

Terabee Sensors for Robot Alignment

During the 2019 season, we received some distance sensors from Terabee which we have been experimenting with throughout the competition season. This whitepaper discusses the alignment algorithms that we developed using the Terabee sensors and how successful they were for the 2019 game.

15 Aug 2019 - Olivia Fugikawa, Adam Kosinski, Niall Mullane, Clara Wang, Kevin Jaget

ZebROS 1.1

In 2018, we wrote a comprehensive whitepaper explaining our groundbreaking work to introduce ROS to FRC. This year, we learned from last year's mistakes and challenges to write better code: code that was effectively organized for automation and took advantage of more of what ROS has to offer. We also made the huge step of transfering some CAN reads and writes to our NVIDIA Jetson TX2, requiring the setup of a second hardware interface. This whitepaper covers the biggest improvements that we made this year.

04 Jan 2019 - Christain Martens, Luke Cunningham, Bram Lovelace, Ty Sayman

2019 Offseason CAD Release

During offseason we focused on improving the swerve drive we used last year and the tank drive we designed last year in the case of obstacles. We’ve put them into a public GrabCAD space so feel free to peruse our files. Note: Most of the designs are either unfinished or won’t necessarily work in their current state.

30 Sep 2018 - Anja Sheppard, Olivia Fugikawa, Niall Mullane, Ryan Greenblatt, Kevin Jaget, Marshall Massengill

Bringing ROS to the Largest High School Robotics Competition

FIRST, or For The Inspiration and Recognition of Science and Technology, is an international organization focused on engaging students through STEM. This year, our team - The Zebracorns - was the first in the high school FIRST Robotics Competition (FRC) to control our robot entirely using ROS. In our presentation, we’ll introduce the unique challenges presented by FRC with restricted hardware options, time, and resources. We’ll talk about our motivation for implementing ROS, the specific application within FRC, and our ambitions for the future of ROS within the FRC community.

06 Sep 2018 - Hans Khatri

ZebraVision 6.0: A Continuation of ROS for FRC

Zebravison 6.0 is a crucial development step towards the completion of a robust and dynamic codebase. Integration of ROS allows for automation and communication between systems, giving way to advanced developments in all features of sensors on the robot. The primary objective was to collect data and extract critical information about the position of the robot compared to other objects on the field. In other words, complete localization and environmental visualization in all aspects of the robot. This task, though expansive, has been finalized and polished off, leaving almost no robot-relative values unknown. Computer vision on The Zebracorns is closing the gap between the current standard of robotics and the goal of a fully functional, independent, and autonomous robot.